 Activation of Air and Concrete in Medical Isotope Production Cyclotron Facilities

 CRPA 2016, Toronto

Adam Dodd
Senior Project Officer
Accelerators and Class II Prescribed Equipment Division
(613) 993-7930 or adam.dodd@canada.ca

nuclearsafety.gc.ca
Outline

• Motivation
• Methods
• Air activation
• Concrete activation
• Conclusions
Motivation

- Neutrons produced in cyclotron target via \((p,Xn)\)
 - can activate materials in vault
 - air activation can pose a radiological hazard to workers
 - concrete activation can become a disposal problem
- Why the renewed CNSC interest?
 - cyclotrons have become much more powerful
 - old days ~ 60 µA and 2 hour runs for F-18 FDG production
 - now could have 500 µA and 6 hour runs for Tc-99m production
 - 25 times more activation!
Monte Carlo simulations

- MCNP5 (1% statistics)
- proton beams 18 & 24 MeV
- simplified vault geometry
- F-18 and Tc-99m neutron source spectra – assumed isotropic
- explore sensitivity of results to
 - changes in vault design
 - source energy
 - source location
 - polyethylene (with/without boron) shielding around targets
Methods (2/2)

Collaboration with UOIT co-op students

– Rob Shackelton (air activation)
– Devon Carr (concrete activation)
– Audrie Ismail (concrete activation)
Air activation

- **Nitrogen 78% of air**
 - N-14(n,p)C-14 (78% of air)
 - C-14: 5,730 year half-life, soft β – little radiological consequence

- **Oxygen 21% of air**
 - O-16(n,p)N-16 (21% of air, 10 MeV threshold)
 - N-16: 7s half life, 6 MeV γ – little radiological consequence

- **Argon ~ 1% of air**
 - Ar-40(n,γ)Ar-41 (0.93% of air)
 - Ar-41: 1.8h half life, hard β, 1.3 MeV γ

Dominant hazard is Ar-41 activity
Geometry and Materials

Go from complex to extremely simple
Reveals essential features and save computing time
Neutron Source Spectra (1/2)

- Neutron point source emulates target during irradiation (isotropic)
- F-18 thick-target spectrum from Mendez et. al. [1]
 \[N(E) = 0.27 E^{0.45} e^{-\frac{E}{2.7}} \]
 - approximated by Maxwell fission spectrum
 - 150 logarithmically spaced energy bins
- Tc-99m spectrum from nested neutron spectrometer data [2]
 - Histogram representation
- All spectra automatically normalized by MCNP
Neutron Source Spectra (2/2)

- Maxwell fission
- F18 Spectrum
- Tc99 Spectrum (24 MeV protons)

Probability vs. Energy (MeV)
Neutron Source Placement

- 3m x 5m x 5m vault
- Eight source positions
- Starting at origin, moving diagonally into corner
- Considering statistical error, effect of source location is negligible

Effect of Source Placement on Ar-41 Production

- Percent difference from mean Ar-41 production

Distance from Origin (m)
Linearity result of large neutron mean free path in air ~62 m

Deviation from linearity for irregular shapes and very small vaults

Ar-40 captures vs. cube bunker edge length

Ar-40 Capture density vs. Cube edge length (m)
Cyclotron and Source Energy

• Iron cyclotron added to centre of the room
 – Slight decrease in production
 – Cyclotron density has no effect

• Source energy tests: (3m x 6m x 12m vault with cyclotron)

<table>
<thead>
<tr>
<th>Neutron energy</th>
<th>Ar-41 production/incident neutron/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-18 spectrum</td>
<td>3.0 E-5</td>
</tr>
<tr>
<td>Tc-99 spectrum</td>
<td>3.6 E-5</td>
</tr>
<tr>
<td>Isotropic 1 keV</td>
<td>5.2 E-5</td>
</tr>
<tr>
<td>Isotropic 0.025 eV</td>
<td>12.0 E-5</td>
</tr>
</tbody>
</table>
Target Clamshell

- Polyethylene target shielding
 - 5, 10, 50cm thickness
 - No boron

- Critical thickness
 - Thin shield thermalizes neutrons
 - >10cm necessary to capture

- γ shielding requirements
Partition Walls

- Wall placement below resulted in 15% decrease in Ar-41 production

- Objects in vault reduce air activation
- Justifies simplified geometry
Ar-41 Activity

• Results are in captures/neutron - How many neutrons per μA of beam?
 – IAEA TRS-468 gives saturation activity of F-18 at different beam energies; at saturation
• Neutron production rate = F-18 decays/s (Bq)
 – extrapolated to 24 MeV → 1.6 \times 10^{10} \text{n/s/μA}
• For Mo-99 (NNS @19 MeV) → 3.2 \times 10^{10} \text{n/s/μA}

• At saturation
• F-18 at 150 μA - (3 x 5 x 5 m vault) ∼2 mCi
• Tc-99 at 750 μA – (3 x 6 x 12 m vault) ∼ 12 mCi
Dosimetry – Dose rates

All dose rates in μSv/h

<table>
<thead>
<tr>
<th></th>
<th>F-18 @ 150 μA</th>
<th>Tc-99 @ 750 μA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3m x 5m x 5m</td>
<td>5.1</td>
<td>17.3</td>
</tr>
<tr>
<td>3m x 6m x 12m</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>5.1</td>
<td>17.3</td>
<td></td>
</tr>
</tbody>
</table>

- Assumes saturation production
- Skin dose – upper limit – assumes no clothing
1. Objects in vault reduces air activation
 • Justifies simplified geometry
2. Air activation is not a problem for F-18
 • Results are for saturation of Ar-41 (half-life 1.8 h)
 • Runs are ~ 3 hours and typical F-18 runs are shorter
3. For Tc-99 may be a problem
 • Runs are ~ 6 hours and beam current ~ 3 times higher
4. Ventilation reduces problem dramatically
 • Less time to build up Ar-41 in vault and less exposure time – 1 hour air exchange time reduces dose by a factor of ~10
Concrete Activation

This produces radioactive waste, affecting decommissioning costs

1. How deep does it go?
2. What do polyethylene layers (with/without boron) do?
3. Is it on all inner vault surfaces? Or is it localized?
Decommissioning a cyclotron [6]

20-year-old 17 MeV Scanditronix cyclotron (~40 μA)

- 40 tons of low-level radioactive waste including the concrete vault wall
- Activities with $\tau_{1/2} > 1$ year

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Measured activity (Bq/g)</th>
<th>UCL (Bq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>0.068</td>
<td>0.1</td>
</tr>
<tr>
<td>Cs-134</td>
<td>0.005</td>
<td>0.1</td>
</tr>
<tr>
<td>Eu-152</td>
<td>0.083</td>
<td>0.1</td>
</tr>
<tr>
<td>Eu-154</td>
<td>0.010</td>
<td>0.1</td>
</tr>
<tr>
<td>Mn-54 *</td>
<td>0.016</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>0.18</td>
<td>0.1</td>
</tr>
</tbody>
</table>

UCL: unconditional clearance level at which material can be thrown out as non-radioactive,

* Made by fast neutrons via (n,p) reaction rather than (n,γ)
Literature Review (2/2)

Reactor study [7]

Ordinary concrete sample in TRIGA reactor in Slovenia

30 minute exposure @ neutron flux of 6.8×10^{12} n/s/cm2

Principal activities found Eu-152 and Co-60 at 6 Bq/g

Conclusion – concrete activation could be a problem with the new cyclotrons
Absorption depth

Neutron capture density in concrete (F-18 production)

- No Polyethylene
- 10 cm thick Polyethylene
- 10 cm thick Borated Polyethylene

Concrete depth (cm)
Polyethylene around target

<table>
<thead>
<tr>
<th>Poly layer thickness (cm)</th>
<th>Percentage of neutrons captured in poly layer</th>
<th>Percentage of neutrons captured in borated poly layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>17.1</td>
<td>32.0</td>
</tr>
<tr>
<td>10</td>
<td>52.0</td>
<td>65.8</td>
</tr>
<tr>
<td>15</td>
<td>72.5</td>
<td>82.9</td>
</tr>
<tr>
<td>20</td>
<td>82.6</td>
<td>91.1</td>
</tr>
</tbody>
</table>

- Results show how deep a sacrificial layer should be (if used)
- Regular poly is almost as good as borated poly
- Either option much cheaper than sacrificial layers in the vault
- And can be put in after vault construction
Spatial Distribution in Vault

We now know activation goes down to depth ~20cm
But this was averaged over whole inner vault surface
Is it on all inner vault surfaces? Or is it localized?

Investigated
1. Tc-99 vs F-18
2. Moving the source position inside the vault
3. Lateral distribution of neutron capture density within 1 side of the wall
1. Neutron Escape Percentage for Regular Poly Around Target - Tc-99 versus F-18 source

F-18 neutrons escape the polyethylene layer more easily than Tc-99's higher energy (more penetration)
2. Moving the Source Position on Y-Axis With 20-cm Thick Polyethylene Layer
2. Relative Capture Density of the Left Wall With Respect to Tc-99 Source Position

\[y = 3.4e^{-0.002x} \]
\[R^2 = 0.99 \]
3. Lateral Distribution of Neutron Capture Density in Near Wall

- Inverse Square Law
- 50cm away WO poly
- 50cm away WITH poly
- middle WO poly

At 50-cm distance radius of activation ~ 150 cm (10%)
1) Compare cyclotron neutron flux with TRIGA reactor flux
 • After 1 year at full operation → 0.35 Bq/g of Eu-152 and 0.33 Bq/g for Co-60 *(measurable)*
 • After 25 years operation → 7 Bq/g for Eu-152 and 3 Bq/g of Co-60

2) 100 x regulatory limit *for disposal as non-radioactive waste*

3) If no steps are taken, it will impact decommissioning cost and possibly financial guarantee
Conclusions

• **Air activation** – Not a big deal and easily controlled through
 – ventilation
 – restricted access for a few hours (normal to allow cyclotron to cool off)
 – detection of Ar-41 by area monitor in vault

• **Concrete activation**
 – could be a challenge for decommissioning
 – localized to concrete near target – including floor

 For both problems, suggest borated poly around target

• **Experiment** – activate sample of vault concrete & analyze by γ spectroscopy
• Reactor neutron spectrum not quite the same as cyclotron neutron spectrum
• Your concrete may have different impurities
Questions?

Initial Results

- 3m x 5m x 5m empty vault with point source